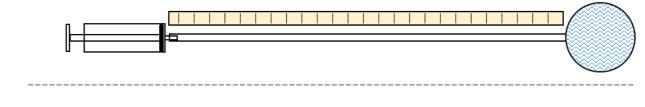
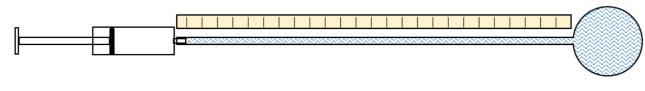
Answer Sheet

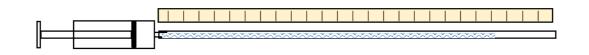
Exercise 1.1

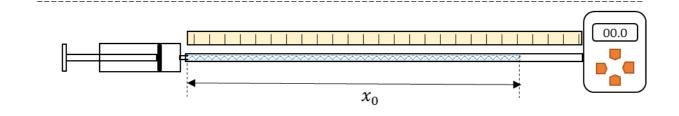
Δp , mmHg	l_1 , cm	l_2 , cm	l, cm			
-5.2	0.0	97.6	97.6			
27.7	5.0	98.1	93.1			
61.8	10.0	98.6	88.6			
102.8	15.0	99.1	84.1			
147	20.0	99.55	79.55			
196	25.0	100.2	75.2			
250.3	30.0	100.8	70.8			

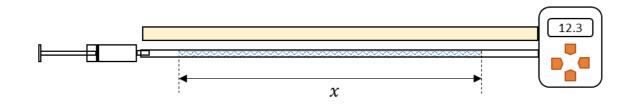
Briefly explain why the edge of water column in the tube near the manometer moves when the pressure is changed?

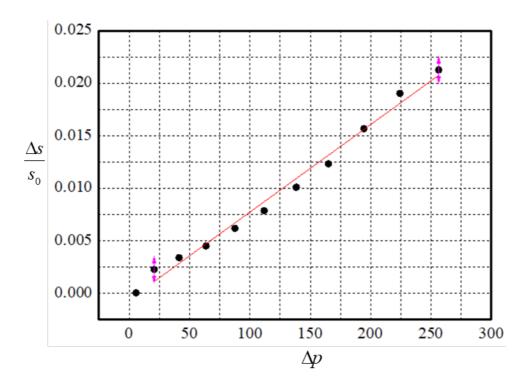

compression of air in the manometer inlet


(and changing in cross-section area of the tube)


Volume of the tube channel v_0 :	Tube length L :
11 ml	149 cm
Cross-section area of the tube channel s_0 :	
7.4	mm^2


Δp , mmHg	x_1 , cm	x_2 , cm	$\frac{\Delta s}{s_0}$, cm		
5.8	0.5	89.9	0.0000		
20.7	2	91.2	0.0022		
41.4	4	93.1	0.0034		
63.7	6	95	0.0045		
87.6	8	96.85	0.0062		
111.8	10	98.7	0.0078		
138.4	12	100.5	0.0101		
165	14	102.3	0.0123		
194.4	16	104	0.0157		
224.3	18	105.7	0.0190		
256.4	20	107.5	0.0213		

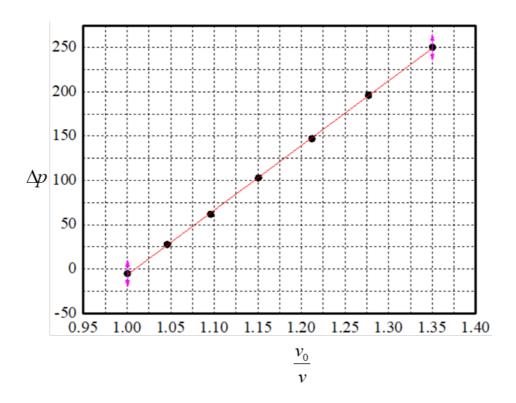

Explain the method of measuring the relationship between the tube cross-section area and pressure in the tube.



$$\frac{\Delta s}{s_0} = 1 - \frac{x}{x_0}$$

Slope of the graph:

 8.3 mmHg^{-1}


Graph of $\frac{\Delta s}{s_0}$ **against** Δp

Δp , mmHg	l, cm	$\frac{l_0}{l}$	$\frac{S_0}{S}$	$\frac{V_0}{V}$		
-5.2	97.6	1.000	1.000	1.000		
27.7	93.1	1.048	0.998	1.046		
61.8	88.6	1.102	0.995	1.096		
102.8	84.1	1.161	0.992	1.151		
147	79.55	1.227	0.988	1.212		
196	75.2	1.298	0.984	1.277		
250.3	70.8	1.379	0.980	1.350		

Slope of the graph:	Graph intercept:		
730 mmHg	–737 mmHg		
Value of p_0 :			
734±5	mmHg		

Graph of Δp versus $\frac{V_0}{V}$

Does pressure p_0 coincide with the atmospher	ic pressure? (Underline the correct answer)
Rise	<u>Fall</u>
Should pressure p_0 and atmospheric pressure	be the same? (Underline the correct answer)
Rise	<u>Fall</u>
Briefly explain your answer if you think t pressure should not coincide:	hat the measured pressure and atmospheric
Because of the	vapor pressure

Exercise 1.5

Flask volume:	Tube volume:
122 ml	3 ml

Change in volume, ml	Manometer readings (equilibrium pressure, mmHg.)		
0	0		
20	-111.7		
40	-189		

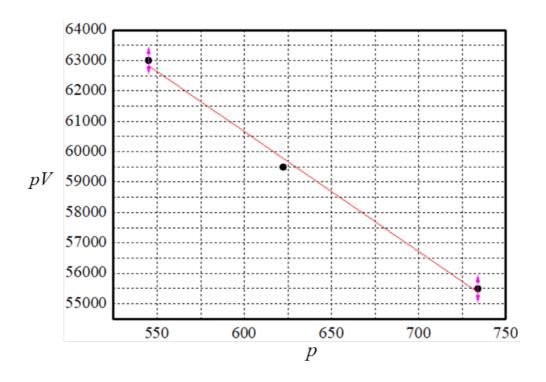
$$v = \frac{pV}{RT} + \frac{\alpha pV_{w}}{RT_{0}}$$

Formula for partial pressure p of carbon dioxide as a function of manometer reading Δp :

$$p = p_0 + \Delta p$$

Water volume in the flask: Temperature inside the flask (temperature of water in the box):

39.9 ml 23.9 °C


Slope of the graph: Solubility of carbon dioxide in water:

39.4

Estimate of error in carbon dioxide solubility:

 ± 0.2

Δp , mmHg	ΔV , ml	V, ml	<i>p</i> ,	pV,		
mmHg	Δ, ,	, , , , , , , , , , , , , , , , , , , ,	mmHg	mmHg· ml		
0	0	75.6	734	55490		
20	-111.7	95.6	622.3	59491		
40	-189	115.6	545	63002		

Temperature of water in the box:	Temperature of water in the water bath:
$t_1 = 23.9 {}^{\circ}\text{C}$	$t_2 = 50.8 {}^{\circ}\text{C}$
Manometer reading at room temperature:	Manometer reading corresponding to the pressure in the flask placed in the water bath:
$\Delta p_1 = -0.2 \text{ mmHg}$	$\Delta p_2 = 132.0 \text{ mmHg}$

Exercise 2.2

Change of vapor pressure in the flask:	
--	--

$$\Delta p_{v} = 65.7 \text{ mmHg}$$

Formulas for calculating the change of vapor pressure in the flask:

$$\Delta p_{v} = \Delta p_{2} - \Delta p_{1} - p_{0} \frac{t_{2} - t_{1}}{T_{0} + t_{1}}$$

Exercise 2.3

Flask volume:	Volume of water in the flask:			
122 ml	$V_w' = 39.1 \text{ ml}$			
Manometer reading corresponding to equilibrium at room temperature:	Manometer reading corresponding to equilibrium in the flask immersed in water bath:			
$\Delta p_1' = -64 \text{ mmHg}$	$\Delta p_2' = 169 \text{ mmHg}$			

Partial	pressure	of	carbon	dioxide	at	room
tempera	ature:					

 $p_1 = 670 \text{ mmHg}$

Partial pressure of carbon dioxide in the flask placed in the water bath:

$$p_2 = 837.3 \text{ mmHg}$$

Formulas for calculations:

$$p_1 = p_0 + \Delta p_1'$$

$$p_2 = p_0 + \Delta p_2' - p_v$$

Exercise 2.5

Solubility of gas at the water bath temperature:

0.5

Does the solubility rise or fall as the temperature rises? (Underline the correct answer)

Rise <u>Fall</u>

Formulas for calculations:

$$\frac{p_1 V'}{RT_1} + \frac{\alpha_1 p_1 V'_w}{RT_0} = \frac{p_2 V'}{RT_2} + \frac{\alpha_2 p_2 V'_w}{RT_0}$$

$$\alpha_{2} = \frac{T_{0}}{p_{2}V_{w}'} \left(\frac{\alpha_{1}p_{1}V_{w}'}{T_{0}} + \frac{p_{1}V'}{T_{1}} - \frac{p_{2}V'}{T_{2}} \right)$$